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ABSTRACT

The shar modulus of elamilotty of a fiber reinforoed composite l an extremely important
mechanioal property. The problem of experlmentaly datermfning appropriate shear modulus
for orthotropic materioa moh as fiber reinforted oompo;ites is not as simple and straight-
forw•rd a In Isotropic materials, and care must be takm both in the experimental methods
and deviatim and usN of the appropriate equations.

This report presents four accepjable methods for d rmini e sher modu•ms of ortho-
tropic materials. Two methods are appropriate for dsterminln n-aplans shear modulusa and
two others re for determinlag Obendlng shoar modulus whie Is apoable in calculating
helkling loads oa laminated plates and sheUs. A discussion of each nmehod precedes the method
of experimental determination. The lerivatlon of all pertinent equations ar presete In the
appendix for eOW referemce.

Preceding Page'S Blank
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SY MBOLS

Oil = Normal stress acting in the i direction

ij = Shear stress acting on i-J plane

= Normal shear strain in the I direction

Shear strain In the i-j plane

E = Tensile modulus

u = Displacement In the x direction for Cartesian coordinate system

v Displacement In the y direction for Cartesian coordinate system

w = Displacement in the z direction for Cartesian coordinate system

= Poisson's ratio
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I 
INTRODUCTION

In determining the usefulness of a composite material as a structural member, It becomes
; etremely important to know its behavior under shear stresses. This means that shear strength
and shear modulus must be determined. This report will be concerned with methods for
experimentaly mea_--ring shear w-oziius.

If a flat plate Is subjected to a pure shear stress 9 as shown in Figure 1, it will undergo
a shear strain y. defined by the angle 8. Thus Y

ii
Y

h ha- deformed shop*

Figure 1. Flat Plate Subjected to Shear Strme

In the case of a perfectly elastic body Hooks's law tells us that T Is directly proportional
to Y. The proportionality constant G i1 the shear inodtaus or as it is often called the Amodulus
of rigidity.w Thus it is a measure of a body's resistance to deformation due to shear stresses
being applied.

¶~ .ai a rauCtu v% tapert a u-Mu, r umlvum m *-I- on awo dsi tifl
values depending on the application of the shear stresses. If a lardinate of n layers is subjected
to shear shress as shown In Figure 1, the deformation will occur in the x-y plane and its
shear modulus may be determined from the shear modulus of each layer by using the following
formula

I G I G
GsI= ~ i ti (I)

where G, and t, are the shear modulus and thickness respectively of each individual layer.

The tctal thickness of the panel is denoted by t. G denotes the in-plane shear modulus.

If a laminate is subjected to twisting, It will undergo shear dcformation which Is three
dimensional, that is. outside the x-y plane. The rigidity or resistance to twisting of the
laminate now becomes n function of the moment of inertia of the cross section just as the
stiffness of a beam oubteoted to bending is a function of the moment of inertia. Thus the
formula for G as a function of the properties in each individual layer becomes:
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n
GI : EG1 Ii I2)

iul

where I, is the moment of inertia of the cross section of each individual layer with respect to

the centroldal axis of the laminate cross section and I is the moment of inertia of the entire
cross section with respect to the same axis. G denotes the Obending" shear modulus which is
appUolable in the calculation of buckling loads of laminated plates and sheets. Thus we can
see from Equations 1 and 2 there is a numerical difference which occurs in the case of
laminates and not in the case of a one layer co ir osite with unidirectional fibers.

Two of the experimental methods reported will Involve twisting (three dimensional defor-
mation) of the test sample and will therefore determine the twisting modul'ts of rigidity.
Equations will be derived which will allow the modulus of rigidity, for In plane deformation,
to be calculated from tensile modulus at (m, 45", and 90" and Poisson's ratio. In-plane shear
tests are extremely difficult to perform. The test method described In this report which
deals with in-plane shear modulus has limitations which will be discussed. The four methods
of shear modulus determination described have all beenused with good results. The equations
used in the calculations have been completely derived for easy reference and appear in the
appendix.

It should be noted that all methods presented in this report determine shear modulus due
to panel shear as oposed to Interlaminar shear. This is Illustrated in Figure 2 for the case
of a laminated structure in the form of a flat plate. Panel shear involves shear modulus

YLI1y-[f LLj

Figure 2. Laminated Flat Plate

relating shear stress to shear strairi occurring in the x-y plane. Interlaminar shear involves
shear modulus relating shear stress to shear strain in either the x-z or y-z plane.

2



A FML-TR-65-42

CALCULATIONS OF IN-PLANE
SHEAR MODULUS

The shear modulus of an orthotropic system exhibiting Hoolian behavior may be obtained
by knowing the modali of elasticity along the natural axis, Poisson's ratio and another elastic
mod•ulus at some angle to one of the natural axis.

Mathematically, we may derive this equation by use of the stress-strain relations for
orthotropic plates. Then by use of transformation equations, we may derive equations for
stress related to a new axis. A similar derivation may be obtained for strain. Relating the
stress and strain equation an expression for shear modulus follows:

The equation, when e = 45 is:

± - --L - -L( 2pa
E 4 5 E ta Ell

Where:

Ge = in-plane shear modulus

E45 ' modulus of Elasticity at 451 to the natura axis

E11 = modulus of Elasticity along a natural axis

A12 - Poisson's Ratio - ratio of strain along the 1 axis to strain along the 2 axis

E2 2 ' modulus of Elasticity normal to E1 1

3
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EXPERIMENTAL DE&IERMINATION OF IN-PLANE
SHEAR MODULUS

GENERAL DESCRIPTION

The in-plane abear modulus can be datermlned oexpermently by dafornm a @quaa". pa-nnA
into a rhombic shape as shown in Figure 3. This can be achieved by several methods. The
square panel can be forced dir•atly to assume a rbombic shape. The difficulty of this method
is keeping the panel fat dring the test. Any distortion occurring will lead to error. Another
method in the pioture frame test in which the specimen is placed into a sqnare strining frawm
with pinned corners. The frame (spelmoe) is deformed into a rbombio shape as shown In
Figbre 4. A third method In an edge flexure (tht is, the specimen Is orieated so that the
laminations are distributed through the width rather than through the thickness) test as shown
in Figure 5. 8inos this is a two point load applcation, the portion of the beam between the
load points deflects a a hunctton of bending only. But tho defloedon as measured bom the
support to the mid-span is additive, and therefore, the deflection due to shear can be de-
termined by measuring the defectlon of both the quarter and mid-points. Using the equations
for deflection

Pi L a4 L
6-9 -+ 3(ke- + PbK 041 x (4)

PLn e PO 3P1. L 4

ySe R1 -a 3w 4E1 UA T 4 2

and substituting distances to the measuring points, the in-plane shear modulus can be solved
with simultaneous equations. The result is:

6' SA (11 a3.F-Sv3
4 t

Plastic laminates reinforced with parallel fiber or cloth layers are orthotropic, that is,
three mu•ually parpendioular &axs of symmetry. As p•'eviously mentioned, the in-plane sber
modulus can be obtaiued In the edgewise flnexure test.

OUTLINE OF TEST PROCEDURES

A bar of rectanlar oross-section is tested in edgswlee flexure as a simple beam, the
bar resting on two supports. The span should be at least ten times the depth of the speoLmeu.
The load Is ap&Wied at the two quartar points L/4 and 3L/4.

Apparatus

(a) Testing Macbine - a properly calibrated testing machine which can be operated at
constant rate of orosahoad motion over the range indicated, and the error In the load indicating
system shall not seooed * I percent. It shall be equipped with a delection measuring device.
The stiffness of the testing machine ehell be mbh that the total elastic deformation of the

4
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p1flff 9 /Ifff, r /14 f jff

Figure 3. Forcing Square Panel Into Rhombic

p

Figure 4. Picture Frame Test

p p

pp "YL y

Figure 5. Quarter Point Edgewise Flexure

5
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system does not exceed 1 percent of the 6DtW deflection of the test specimen dihrng test or
appropriate oorrections shall be made. The load indlcating mechanism shall be essentially
free from Inertia lag at the crosehead rate used.

(b) Loading Nose and Supports - the loading no.. and supports shall have cylindrical
sufacea. In order to avoid excessive Indentation. the zadius of the nose and supports shall be
at leas 3_2 m-m (ll1/8 in, fo k& all peoimense

Test Specimens

The specimens may be cut from, shedts, plates, or molded shapes, or may be molded to the
desired finished dimensions.

For Materials 1.6 mmv (1/16 In.) or Greater In Thickness - for edgewise tests the width
of the specimen shall be the thickness of the sheet and the depth shall not exoeed the width
(Notes 1 and 2*). For all tests the aspac shall be at least 10 times the depth of the beam. Thbe
specimen shall be long emough to allow for overhanging on each end of at leasd 10 percent of
the span bid in no case less than 6.4 mmn (1/4 in.) on each end. Overhafg shall be sMafloent
to provedt the specimen from s@Upping througha the supports.

Number of Test Specimens

(a) At least five speclmons shall be tested for each sample in the case of isotropic ma-
terials or molded specimens.

(b) For each sample of animotropic material in sheet form, at least five spocimens shall
be tested for each condition. Recommended conditions are flatwise and edgewise tests on~
specimens cut In lengthwise and crosswise directions of the sheet. For purposes of this test,
a'length~eaeO shall designate the principle axis of anisotropy, and shall be Interpreted to
mean Lixe direction of the sheet known to be the stronger In flexure. OCrosswise' shall be the
sheet direction known to be the weaker inflexure, and shall be at 90 dmerea to the legthwise
direction.

Conditioning Test Specimens

Unless otherwise indicated In Material Specifications, all test specimens shall be con-
ditioned In accordance with Procedere A described In Section 4(s) of the Methods of Con(tcn
Ing Plastics and Electrical Insulating Materials for Testing (ASTM Designation; D 618) , and
tests shall be oondaote In the Stanahrd Laboratory Atmosphere as defined in th am
specification.

*Noits 1 - Whenever possible, the original mar acse of the sheet shall be unaltered. However,
where machine limitations make tt Impossible to follow the above criterion on the unaltered
sheet, both surfaces shall be machined to the desired dimensions and the location of the speci-
mnans with reference to the total thickness shell be noted. The values obtained on specimens
with machined varfaces may differ from those obtained on specimens with original surfaces.
Consequently, any specifications for fLexural properties on the thicker sheets must state
wheher the original inarfaes are to be retained or not.

*Note 2 - Edgewise tests are not applicable for sheeds that are so thin that specimens
nteeting these requ-rmena cannot be cut. If specimen depth eoceds& the width, buckling
nay occur.

6
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Procedure

(a) Use an untested specimen for each measurement. Measure the width ard thickness
of the specimen to the nearest 0.03 mm (0.001 in.) at the center of the span. For specimens
leos than 2.54 mm (0.100 in.) in thickness, measure the thickness to the nearest 0.003 mm
(0.0001 inl.

(b) Determine the span to be used as described in Section 5. After the span is set,
measure the actual span lengtb to the nearest 1 percent.

(c) Where Table 1 is used, set the machbir for the specific rate of crosahead motion, or
as near as possible to it.

(co Align the loading nose and supports so that the axes of the cylindrical surfaces are
parallel and the loading nose is midway between the supports. This parallelism may be
checked by means of a plate with parallel grooves into which the loading nose and supports
Will fit when properly aligned. Center the specimen on the supports, with the long axis of
the specimen perpendicular to the loading noses and supports.

(e) Apply the load to the specimen at the specified crosshead rate, and take simultaneous
load-denlection data. Deflection shall be measured either by gages under the specimen in
contact with it at the center of the span, and at one quarter point, the gages being mounted
statilonary relative to the specimen support, or by measurement of the motion of the loading
nose relative to the supports with a gage at mid-span. In either case, appropriate corrections
for indentation in the specimens and deflections in the weighing system of the machine shall
be made. Load-deflection curves may be plotted to determine shear modulus,

TABLE 1

SUGGESTED DIMENSIONS FOR TEST SPECIMENS

i - I L E ."

Nominal Width of Length of Test Span, Rate of Cross-
Specimen Specimen, Specimen, mm (in.) head Motion
Thickness, mm (in.) ' mm (in.) mm (in.) per
mm (in.) min.

0.8 (1/32) 25.4 (1) 50.8 (2) 15.9 (5/8) 0. 51 (0.02)
1.6 (1/16) 25.4 (1) 50.8 (2) 25.4 (1) 0.76 (0.03)
2.4 (3/11) 25.4 (1) 63.5 (2 1/2) 3b.I (11/2) 1.02 (0.04)
3.2 (1/8) 25.4 (1) 76.2 (3) 50.8 (2) 1.27 (0.05)
4.8 (3/16) 12.7 (1/2) 102 (4) 76.2 (3) 2.03 (0.08)
6.4 (1/4) 12.7 (1/2) 127 (5) 102 (4) 2.79 (0.11)
9.6 (3/8) 12.7 (1/2) 191 (7 1/2) 152 (6) 4.06 (0.16)

12.7 (1/2) 12.7 (1/2) 254 (10) 203(8) 5.33 (0.21)
19.1 (3/4) 19.1 (3/4) 381 (15) 305 (12) 8.13 (0.32)
25.4 (1) 25.4 (1) 495 (19 1/2) 406 (16) 10.92 (0.43)

7
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Rotests

Values for properties of shear modulus shall not be calculated for any specimen that
breaks or bookes at some obvious, fortuitous flaw, unless moh flaws consttet a variable
being studied. Retest@ shall be made for any specimms on which values are not calculated.

Caloulstion of Ohar M odelu

A beam is tested In edgewise fleure as a simple beam supported at two points and loaded
at the quarter points. The shear modulus in the plane of the panel can be calculated with the
folowing equation.

9PL
$A (1P3F- yL) 17)

T I

wbere.

G - In-Plano shear modulus

YL/4 = dalcotion at the quarter point in millimeters (inches)

YL/2 - duflection at mid-span

Note that this equation is based on tho difference between two defleotions. Time eztrome
care must be eurlcsed in malng these meamuremente or the reslts will not be aocurate.

A - bd, the cross sectional area in square centimeters (square inches)

P - load at a given point on the load deflectiea curve, In kilograms (pounds)

L - span, in oentimeters (inches)

b - width of beam tested, In centimeters (inches) and

d - depth of beam tested. In oent/meters (inches)

Arithmetic Mean - for each series of tests, the arithmeLo mean of all values obtained
shall be oalculated to three sisifloant figures aL'nd reported as the aiverage value" for the
particular property in question.

Standard Deviation - the standard deviation (eotlmats4 shall be calculated as follows and
ropored to two sipificant figures:

9 -I

8 ,
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where:

S - eatimated standard deviation

X - value of single observatlon

n_ - nmbar of obaervtilons

X - arithmetlo moan of the set of observations

Report - the report shall Include the following

(1) Complete Idmmtifloation of the material tested, Including type, source, mainufact•rer's
code number, form, principal dimensions, and previous history,

(2) Direotiono of cutting and loading specimens,

(3) Condttionir. proceduse,

(4) Depth and width of the specimen,

(5) Span lenth,

(6) Span to depra ratio,

(7) Radius of sapports and loading nose,

(8) Rate of croashead motion In millimeters (inch"q per minute,

(M) Maximum strain in the outer fiber of the specimen,

(10) Shear modnlus, average and standard deviation.

The above oc~ins is bamod on ASTM Desigpalon: D 790-63. mStandard Method of Test for
F r't PrOpu--- of plPg-Wafts,3 and Milt Sandard 401A, 4Sandwioh Constructions and
Core Meterials; Umwral Test Methods.0
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FOUR POINT LOADING TEST

GEN ERAL DESC RIPTTON

The saddle test or four point loading in useful in determining one of the three possible
shear moduli, where with the torsion test of rectangular beams, the effects of two of the
thr•e moduIli are combi"ned. In thhe saddle test, the shear modulus, G, is measured by imposing
a pure twisting moment on a square plate. This is accomplished by plncing four equal forces
at the corners of the square plate. The forces are perpendicular to the plate with those forces
at the first and third (diagonal) corners being upward and the other two forces downward. The
corner loads force the square plate to assume a hyperbolic paraboloid or a saddle shaped
surface. The sections of the surface made by vertical planes through the diagonals are two
identical parabolas, one concave upward and the other concave downward, with the vertices
at the center of the plate.

The shear modulus, G, can be computedfromthe ratio of the imposed loads and the vertical
deflections of the plate with respect to the center of the plate under test. The derivation of
the following equation is found in Appendix MI.

Sf 3Px y
I~ 

(9)
Wts

where:

P - the load applied at each corner (lt)

t - plate thickness (in)

w = deflection of a point (xy) on the diagonal with respect to the center of the plate (in)

(xy) - coordinates of the point on the diagonal (in) (See Figure 16)

G - shear modaluo with respect to the plane of the plate (psi)

The equation becomes:

G X 3Put

where:

u - the diagonal distance from the center to point (x,y)

To insure correct test results the following steps are necessary:

(1) Never exceed one-half the proportional limit of the material.

(2) It is recommended not to lot u exceed half the distance from the center to the corner
of the plate, thus amoiding any localized loading conditions at the corners of the plate.

10
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(3) Since both the testing machine and the indicated deflection are twice the actual load at
eoch corner and the deflections of one point with respect to the center, the indicated values m sy
be substituted for P and w.

When possible, fairly thick specimens should be used in order to avoid effects associated
with initial curvature. The side to thickness ratio should be maintained between 25:1 and 50: 1.
If any initial curvature is present, it can be minimized by obtaining two load-doflection curves,
one with two given corners deflected downward and the second curve with these corners
defle ted upward. If there is a large difference in the two calculated shear moduli because of
a deflection which is too large or lack of symmetry in their lay-up, the average of the moduli
cannot be accepted as a good value of the actual shear modulus. In order to apply this test to
orthotropio materials, the orthotropic axis must be parallel to the sides of the specimen
(See Appendix HI).

If the plate to deflecting according to theory, then lines drawn on the faces of the square
test specimen, parallel to the edges, must remain straight during the experiment. A straight
edge may be used to determine whether gross departures from the theoretical assumptions
exist in any given plate. Also, the deflections of the four gage points with respect to the center
should be approximately equal.

The shear modulus fixture is shown in Figure 6.

As mentioned before, localized loading effects may exist at the corners. To avoid this, the
sharp loading points found in the fixture (Reference 1) may be replaced with roller bearings
(micrometer ball attachments). The use of roller bearings at the loading points allows the
plate to shift its points of contact as deflection occurs. The rounded surface also distributes
force better than a pointed support which may indent the test plate. This indentation may
cause separation of the fibers of a reinforced specimen as the load increases.

In order to eliminate reader error when recordingload verses deflection, the dial indicator
may be replaced with a microformer which allowsuse of the x-y recorder. This newer method
may be necessary when testing low modulus materials, where the rate of deflection to load
approaches the 0.3"/min crosshead speed.

OUTLINE OF EXPERIMENTAL PROCEDURES

Direction of Grain - the orthotropic axis of the laminate shall be parallel and perpendicular
to the edges of the test specimen.

Test Specimen - the test specimen shall be square, with the thickness equal to the thickness
of the material and the length andwidth not less than 25 nor more than 40 times the thickness.
The thickness, length, and width of each specimen shall be measured to an accuracy of not less
than : 0.3 percent. Care shall betakento avoid obtaining test specimens with initial curvature.

Loading Procedure - the test specimen shall be supported on rounded supports having a
radius of curvature not greater than one-half in. (6 mm) on opposite ends of a plate diagonal,
and loaded in a similar manner on the opposite ends of the other diagonal. The loading and
supporting frame shall be rigid. Figure 6 indicates the method of test and shows details of the
plate shear on four point loading apparatus. The load shall be applied with a continuous and
uniform motion of the plate corners to avoid the load and reaction effects. The plate shall not
be stressed beyond its elastic range, and increments of load shall be chosen so that not les
than 12 and preferable 15 load-deformation readings are taken.

To eliminate the effects of light initial curvature, two sets of data shall be obtained, the
second set with the panel rotated 90 degrees about an axis through the center of the plate and

11
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perpendicular to the plane of the plies. The two results shall be averaged to obtain the shear
movable head at a rate of .003 times the length of the plate in inches (cm), expressed in
inches (am) per minute, with a permidlibwe variation ofi 25 percent.

Deformation Measurements - the deformation shall be measured to the nearest 0.001 in.
(0.02 mm) at two points on each diagonal equidistant from the center of the plate. These
measurements preferably shall be made at the quarter point of the diagonals, and if other
points than these are chosen, care shall be taken to avoid location near the modulus for the
plate. A satisfactory arrangement for measuring relative deformation is indicated in Figure 5.

Calculation - the shearing modulus of elasticity shall be calculated as follows:

2t w

where:

G - shearing modulus in pe ,ods per square inch (kg per sq. cm)

P - load applied by the test machine to the panel. (This inad is twice that applied to each
corner) in pounds frt

t = thickness of the plate in inches, (cm)

w = deflection as read on the dial gage (twice the deflection relati7e to the center) in inches
(cm) (Note 3*)

u - distance from the center of the panel to the point where the deflection is measured in
inches (one)

The above is based an ASTM Standards for the determination of plate shear.

*Note 3 - The average valuee of panel w are generally taken from the slope of a previously
plotted load-daflection curve.

13
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TORSION TEST

GENERAL DESCRIPTION

When a spenimon is suaceratd io toroluorl, a oo-aple normal to UAW axis of the meam~tr is,
developed in every cross-ssetion. The formulas for circular shafts of constant cross-sections

are:

I = -T$-ii

G z (12)

These equations are based on the following assumptions: The resultant of external forces Is
a couple in the plans perpendicular to the axis of the shaft and these forces are in equilibrium.
The specimen is of constant cross-section and during the test the axis remains straight.
Planes normal to the axis remain plane and the diameter in any plane remains straight, that
Is, no warping occurs durinn the test.

The material must be homogeneous and Isotropic. The stress must not exceed the propor-
tional limit. While Equations (11) and (12) areused to obtain the torsional modulus of rupture,
this value Is not the true stress but rather a measure of the relative strengths of various
materials.

The ordinary torsion formulas do not apply to a shaft having a cross-section other than
circular. There are several disadvantages associated with nonoircular cross-sections. St.
Venant found that plane sections do not remain plane when subjected to torsion. As previously
mentioned in the saddle shear test, three different principal shearing moduli are possible.
These shearing stresses correspond to the shearing strains of the three planes of elastic
symmetry. In the torsion test of non-circular cross-seectiQns, these mou il h ave the combined
effect of two of the three modui.In order to obtain either modulus, it is necessary to combine
results of teats on two or more specimans having different dimensions.

When testing rectangular cross-sections the above disadvantages can be eliminated through
use of thin cross-sections. This will be shown in the appendix. As can be seen in the following
diagram of the elemental block, the maximum shear stress in a rectangular bar is at the
center of the long side, that is at a point on the &unrlace nearest the longitudinal axis (axis of
twist). St. Venant's paradox states if two bars of the same elastic material, but having different
non-circular cross-sections, the one with a lower polar moment of inertin has the greater
torsional stiffness and strength, provided there exists no concave surfaces in either bar.
No shearing stresses can exist on the outsiC, surfaces; therefore only the faces of the block
elements not parallel to a surface are subjected to shearing stresses. Since no lcngitudinul
atresses are present In block A, no counteracting stresses erist at the front and back faces.
It is now apparent that the shearing stresses vary from a maximum at the center of the Zaces
to zero at the corners. Equations (11) and (12) are modified in Appendix IV to allow for this
parabolic stress pattern.

14
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Assumed
Voration

A-- INYI 2

Figure 7. Torsion Member with Elemental Blocks

OUTLINE OF EXPERIMENTAL PROCEDURES

This method describes a procedure for determining the stiffness characteristics of
laminated plastics by direct measurement o0 the apparent modulus of rigidity.

Significance - the property actually measured by this method is the apparent modulus of
rigidity, G, sometimes called the appareot shear modulus of elasticity. It is important to note
that this property ts not the same as the modulus of elasticity, E, measured in tension, flexure,
or compression. The measured modulus of rigidity is termed "apparent* since it is the value
obtained by measuring the angular deflection occurring when the specimen is subjected to an
applied torque. Since the specimen may be deflected beyond its elastic limit the calculated
value may not represent the true modulus of rigidity within the elastic limit of the material.
In addition, the value obtained by this methodwill also be affected by the creep characteristics
of the material, since the time of load application is arbitrarily fixed.

Apparatus

(a) The testing machine must be capable of exerting a torque of approximately 0.12 to
1.2 Kg-cm (0.1 to 1.0 lb-in ) on a test specimen with a span of 38.1 mm (1.5 In ). A schematic
diagram of a machine suitable for this test is shown in Figure 8. The amount of torque may
be varied to suit the stiffness of the test specimen. Different weights should be available for
this purpose. The actual amount of torque being applied by any given combination of weights,
torque wheel radii, and shaft bearings shall be determined by calibraon.

(b) Timer - a timer accurate to 0.1 sec.

(o) Micrometer - a dead-weight dial type micrometer capable of measuring thicknesses
accurately to 0.0025 mm (0.0001 iný.

15
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LOAD CORD

TORQUE- PULLEY STOP PIN
SCALE GRADUATED
0-3601

TORQUE PULLEY

PULLEY

BERINGS-<1 1
LOAD

SUPPORT-
RODSPECIMEN CLAMP SPAN

TEST SPECIMEN

Figure 8. Torsion Tester
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Test Specimens

imlf 'Iwa wjm,.aAr. . a k.ai 11 1w v,E i. ka. ... A ,Uw.. • l ~•.i4 w k*vw. •i 4 C-lp~~b er. j .. U

out from compression-molded dhests. Care shall be takWn to ensure that the test specimens
are orthotropio with respect to the natural axis. A punch-and-Jig unit is a useful tool for
punching the mounting holes in the specimen.

(b) The thickness of cloth and angled fiber reinforced specimens shall not exceed one-
tenth the width. For unwoven unidirectional fiber reinforced composites Equations 104 and
accompanying table given in Appendix IV is applicable.

(c) Duplicate specimens of each material shall be tested.

am - 50.8 t 0.1025mm 1;

(2.0 t 0. 001) 45t 0,025mmi(0. 250 t0.001 )

*0.025mm a 3.734mm diem.
(2.5 * 0.001) (0.147 0)

-10.25 t0."001

Figure 9. Test Specimen

Procedure

(a) Measure the width and thickness of the specimen to three silpafloant figures.

(b) Carefully mount the specimen in the apparatus. Adjust the clamps so there is no slack
or tension in the specimen.

(c) Release the torque pulley. After 5 seconds note the angular deflection of the pulley and
return the torque pulley to its inital• position. If the reading thus obtained does not fall within
the range of 10 and 100 degrees of arc, vary the applied torque In ouch a way as to produoe
such a reading. (Note 4*)

(d) After each suitable reading ia obtained, repeat the steps indicated in paragraph (c).

*Note 4 - In order to obtain measured values of apparent modulus of rigidity, G, that are
toomparable to the true value of G it is desirabla that measurements be made within the
eCatic limit of the material being tested. Therefore, torques shall be chosen that will cause
doe±lctions that are as small as it is practical to measure accurately on the macbine being
used.

17
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CaLlcula~tion

(a) Calaulate the apparent modulus of rigtity, G, as follows

w. (13)
wtGS

wheret

T - Torque

w - Width (W21Ot)

t - Thioliemo

6 - Angle of twist

The above tevt are based on ASTM Designation D 1043-61T -Tentative Method of Test for
Non-Rigid Plastics as . Function of Temperature by Means of a Torsion Test.M

18
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APPENDIX I

DERIVATION OF ORTHOTROPIC SHEAR MODULUS EQUATION

In order to derive an equation for this shear modhus of a two dimensional orthotroptc
material as a function of Young's modulus of elasticity and Poimson's Ratio. we start by

Poreoalling the gmnertllad equations of Hookian behavior for two dimensional Wnisotropy.

4x ii xu t yy a uy 114)

4yy a0# O'xx +- all 'yy+ 0ssrxy (15)

y :+ %so, + a
Ky a, asl 116

If we oonsider an orthotropic material whose elastic constants, parallel and perpendicular
to the natural axes, may be measured, then, we may obtain stress-strain relations for
orthotropic plates.

y

S~Figure 10. Axis System for Composite

S~In the system. shown (Filpe 10), the equations become-

Go
I O'i, Pm O'n or ' i 8

!~E# E~l[t ll Ell(lO

42t2 Et E! 419)

21

I 2•

I



AFML-TR-65-42

The laws of elaeticity are known in directions 1 and 2 but not in the x and y direction. We
desire to know tne stresses as referred to a set of axes x and y which make an angle 9 with
the natural axes. I and 2. Transformation a•,•latio a for stroas And at-rAn 00- be derived
from purely geometrical considerations for this new axis.

The following ann1yo~s derves the needed equations:

Conalder a two-:bmensiond element (Figure 11) subjected to a general stress field,

I - Y y

TRY

%y

Figure 11. Two-Dimensional Element

If the stress distribution is known with respect to a given coordinate axis, then it can be

determined with respect to any other coordinate axis by means of transformation equations.

So then consider an element of unit thickness with one face of unit length perpendicular to

the 1 axis. AUl elements of a body in equilibrium are thexrselves in equilibrium If all external

and internal forces are considered.

2

TII

'0'XX C. .

Figure 12. Stressed Orientation for Element
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Summing forces in the 1 direction (Figure 12):

a-,, - O' 1cos•cosO - .,y sin~cos6-

cyr sinesin 8 - r,, cos8sintf 0

or

"Oil 7. Oxcos8O + Csyysin" + 2 r., sint, zos6 (20)

Similarly, considering an element with face perpendicular to the 2 Wexs:

Y

2

fyY

Figure 13. Stressed Orientt•ton for Element

Summrirng forces in the 2 direction (Figure 13):

c,- " x. sinO sinO + Txy cos0 sinO

- all Cos cos8 + XY sinecos6 a 0

or

Oja z vX. sineG + cyyos'6 - 2 ry sin cose (21)

Then summing forces on either element:

r, + ay. sin~cos6- rxycos~cosO

- ayy cos~sinO + ry sin~sini? = 0

23
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or
- "l " --- •- I.f 'Sl d", , -a ...

rigugw- ShIfUCOOV + T 1 U -Sin V a,2at •yy I~uo X sn •, + x

Summarily,

c r cos°e + c"yy singe + 2 r.,y sin cosO (23)

*g2 cr, singe + a- Yc0ll' - 2 T(y sinecose 124)

rim x OyyuSin oS6 - CU sinecose + ;xy(COs6-since) (25)

If we subjeot our system to a stress, Cy , then from Equations 14, 15, and 16, we may write

*xx Q , o xx (26)

cyy O Gl@ 55xx (27)

YX" a85xx (28)

Using Equation 23:

fXx x 4 11 Oxx

where:

all " "-"129)
I;X

so that aota.

E z-x
x Exx (30)

We have derived equations for stress related to a new axis, we now need to obtaln an
equation for strain related to the new axis.

24
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To set up strain equations at a point in a deformed body, conslder a small length r along
the 1 axis.

y

I

Figure 14. Axis for Strained Orientation

The projections of this length on the x and y axis are:

Ax r cos 8  131)

'Ay r $in (32)

If you and v are displacements of the point A, the displacements of the point B can ýa
expressed,,

axy

V V + A- + y (34)

After deormation, the coordinates of point B, which were origLna1ly x and y become:

Ax +u -u: Ax + - &t + (u (35)
Ox d, av a

Ay + v- z v Ay + - AX + -L &Y (36)

The new length of r after elongation becomes r + C r, therefore:

Ir + e) (2 + + au &

e a

25
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Dividing by r and substituting for x and y

(i + 4) z [co06(i + +1-v) + sine

+ [Co0111 + f;in (i+ ,)

Since ( and derivatives
du du av dv

T- WIax-

are small quantities, all orders higher than the first may be neglected.

Expand and neglect higher order terms:

I + 2c cosZ1 + 2 cos 2  -A- + 2 sine cos8 du
ax d

+ sinOI + 2 sin6 --. + 2 sine cosO a.v
ax

Then the unit strain through a unit area along AB becomes:

E1 cos Am + sine cose & + s;n't 8
:E If = Coscos ORy dy

+ sincose -3"dK ( 38)

And aince by the classical strain-displacemont relations:

- u{xi =X du- (39)

dv
4 yy J - (40)

the , x c+ y (41)

then

4F RXCos
te + y sin'8 + yxy sin~cos8 (42)

and conversely,
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Ex 'e1 coi'6 + C., sin'O + y,, zin~cos8 (43)

Then using Equation 30

and substituting Equation 43

1 4 OS~ + '911 si"e +-YosinecosG]
-rx ~ I IF

and from Equation 43

-I = ______ !!i,8 sin 21

+ -ý' sin~cosi9

By using Eq'iations 17, 18, and 19,

1~ a = ~ -! [-L-ss O' osg - /AI ax min6e

+ ~ ~ _______ siM,, fi oýLto e "XCOS'6 in*

-Cos 
48 2 ýLl sin3 9cose uin4B cos Gsin'O

+ E-f + (44)

Solving for G 12 yields-

SCou'Gsino8
I ~ siB1 ___ICO$

4  -- 2 ju. vi#n~cos"'a I I45)
Ex 4EII Ell I a

2?
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When 6 48"

s Is0s : Gas : 1
4 I L {_2I A,.

E4; Eat2 E4
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APPENDIX II

CALCULATION OF SHEAR MODULUS OF A FIBER
REINFORCED COMPOSITE FROM THE DEFLECTION
OF A QUARTER-POINT SYMMETRICALLY LOADED

BEAM WITH A RECTANGULAR CROSS-SECTION

The effect of shearing force on the deflection of a beam has been discussed by Tlmoshenic
(Reference 11). He shows that the slope of the deflection curve due to sheir is equal to the
shearing strain. Thus

dy r. ___yo VO (47)
dx G JWG

wheres

Ys - deflection of beam due to shear

V = shear force

Q = first moment of area about the neutral axis

I - moment of inertia

w - width of the beam at y - 0 (this is assuming the neutral axs is located at y - 0).

Assuming small deflections, the equation for curvature of the deflected curve considering
both shear and bending is

daY days dtyb M + Q dVd y + a: El 1W -- (48)

dxt dxt dx E iW dx

where:

Yb - deflection due to bending as obtained from the Euler-Bernoulli law.

Looking at Figure 15 we see a simply supported fiber reinforced beam loaded with a force
P at x - L/4 and at x SL/4. Since only the normal stress 7xx and the shear stress 'r XY are

considered, simple beam theory will still apply to the case of an orthotropic material.

For a beam of rectangular cross-sutiton

a
wdt wds

where d - depth of the beam. Equation 47 becomes
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dy$ 3

dx 2 AG

where A, of course, is the cross-seotion area. Using Equation 48 the equation for curvature

will be

d_ , U+ _j dV (49)
dx' El 2AG dx

Using this equation forthe section 0 sx T.L/4 along with the shear and moment diagram we have

dKI EI 2AG dx

dy1  PIi 3P

px 3Px+C

I- IE 2AG + c,3

zt 0 , Y:O, A° ©:0

Px3 +- 3PxY, -iE * "2-A- +*c, A

PLPP

PL

4

moment

Figure 15. Simply Supported Fiber Reinforced Composite Beam with Quarter-Point
Symmetric Loading Showing Shear and Moment Diagram
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Again applying Equation 48 to the section L/4 'x 5-L/2 using the shear and moment diagram
we have

dl~ PL

dx 4E1
dy, • c

dx 4E1

atx dx

.%, c 3 -: '

dy3 2  PLX + PL'

dx 4EI 8E

dx 4EI SCI

Integrating again

yt f--+ P- +c 4

To determine the constants oI and c4 we look at the slope and deflection at the point x = L/4.

The slope due to bending in the first section must be equal to the slope due to bending in the
seoond section. Thus

PP
(-0xy MA dA'O

P 3P 3P + 0 PO
32ES 2AG 2AG : 16E1 + 8EI

*% Cg 3PL'"I c 32E1

-- PX a, . 3 -L + L Px (50

60 ( 2AG~ 32E)(0
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Mutt also have ooninuity of deflection at x Thus4 't

PL! 3 PC + cL' + C
384ET sA" 12E(1 IZSEI 32E[ 4

PC % a _PL (51)

PLx + PLax PLI . 3PL
Ya- SEK SE 3-"4EI+ SAG

The deletio• s at x - and x -" ara
42

PL + 3PL

48E1 SAG
4

4 IPL+ 3PL

T -Wu reu-

MultiAPYIn the first of these equations by 11/8 and maitracting the second from it will yield

11 YLL 9PL
if YL- 64AG

4
(52)

G=: 9PL

43
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APPENDIX III

DERIVATION OF PLATE EQUATION FOR
SADDLE SHEAR TEST

According to St. Venant's princip~le, a square plate loaded with a constant twisting moment
along its edges is statically equivalont to the loading shown in Figure 16, provided the thick-
noes of the plate is small in comparison to the other dimensions. For a more detailed Justifica-
tion of this statement see Reference ;\2.

y
2/ 2M

2MI/ /0_ P
a -71 ,-; 12,

Figure 16. Orthotro)pic Plate Loaded at Corners

1;nv. n,4thnttnnii nlat'an

S(53)

y G-

Let w deflection In z direction of any point point (xy) in the plane of the plate,

-Do (56)

M • +Da v.%) (+,)
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Gf3~5 (58)

where;

Mx - moment per unit length along the edge parallel to the y-axis

My - moment per unit length along the edge parallel to the x-axis.

Mxy W twisting moment per unit length dlstributed along the edges.

DI Exts 3 R EIt

In this particular problem

M 1 M= y 0 ; MXY M,

Using Equation 52

6M,- 6w

Gh 3 Oa

Integrating with respect to x

aw - 6M1

Integrating with respect to y

W =+ ,, y, + f (59)Gts

from Equation 59

0x2
-x I

ay4
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Using Equations 56 and 57 with the conditions Mx = a: 0 will yield

fy
1it + OA., Y, z 0

; ]+ I" 'x j fit( >

These equations must be 0 for all values of x and yI

0%. fa' (x a C, constant 160)

f," y a C 2: constant (61)

1 #/hY C1  0

I /Lyx C 0

We see the solution to this to c 1 = c 2 = 0. Using Equations 60 and 61:

"(63)
0% fit 'C X +C

see f, I yH = ce y +'co 6*

Using Equations 62 and 63 in Equation 68 we have

6MI

w : • xy + C x . c¢ y + C7

whsrI C, i?

wh ere . cT 7 Is a 4 + c 0

Other conditions
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I. w (0,0) 0 066 C 0

2. 0 .-. CS :o

a x I N a 0lyJ -o .0. ,

Now

GM0
W 2• xy

Replacing Ml by the tstaticall equitvalent load shown In Figu~re 16 we have

W 3P xy (64)
Gta
whore P x 2 M4

If we let u - the diatanoe from the origin along a diagonal of the plate-

U

£Pu (65)

9% W xU
ZGh-!

*Note 5 - The orthotropic stress-strain relationships are good only when the x and y aids
ar both principle axis of symmetry of the orthotropic material. Otherwise Equations 64 and
65 will not work.
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APPENDIX IV

TORSION OF AN ORTHOTROPIC BAR

The St. Venant semi-lnvers approach will be used.

•Y

Filgure 17. Par of Arbitrary Cross Section Subjected to Torsion

AssuLme

'Cr.," , yff CrYr zz = rxy"a 0 (66)

Now applying orthotropic stress-strain relationships (assuming x - y axis to be orthotropic
axle of material)

Gxx Txx

-Y E' (o',, - "Y,,, o.,, - ,,,, o-z,)
(67)

I €.

"-, " Tz( ~zz -Lz V,,o- - 0.,, -,,,,

31 XYry Y Gyz yZ z - Gas Jz
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we see that

fxx N 4yy =Y 4zz • YXY 0

(XX f,(y,z)

yy ay (68)

z " O----.w & 0Xy)
~)u c~vat, af3-~ = a_.• + L V_ a f I o%+ -

xy jy Yx y x

Looking at a cross-section of a bar of arbitrary cross-section we can determine the
displacements

VI

Figure 18. Cross-Section of Bar Having an Arbitrary Shape and Showing Displacements

P ib a point at an angle e to the x axis and s distance r from the origin. P' Is the same point
after being rotated through an angle zwhere 0 is the angular twist per unit length. Assuming

the displacements are small we have from Figure 18

u = - r8z sin7 a - Yoz69)

v = rz cos• z J O9

In order to solve an elasticity problem it is necessary to satisfy equilibrium, compatibility,
and boundary conditions.
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Looking first at the equilibrium equations

+ -- ý- + 0+ =Cry Ory

dMy yy yz
r + + - = ( 170)

-r., + + -O _ZZ 0ax ,y z

Equations 70 %r1il be satisfied provided

=C Z 0 ----rx 91(,Y (71)
Oz

16Z y 0 lryz 9lx~y) (72)

dr Cr
a + -- = 0 (73)

By using the stress strain relationships, Equations 67, and the strain displacement relation-
ships, Equations 68, 71 and 72 are satisfied exactly. Since u and v are continuous functions
they will satisfy coiPlatibilllfvY

In this approach a stress function 0 (x, y) is used which will satisfy equilibrium. If we pick
s iuch that

TaZ y (74)

Equation 73 will be satisfied and thus the equilibrium conditions met.

Now looking at the compatibil ty equations
at "xYR at-61 at's yy
--- + C'a5
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dya a'z a .y
- .+ t76)

OPY ale a'as
xz 0- sit + 2 (771

4'60 (/ x ay47
asg _ xz xy• + o)

2 - = + -+ -,(78)

a'.",._' o o
2r a

ala: Oy dx +80

ia'. a r ~
- - a)-ooi4A, al ax a, az

It can be DeeO that SInMS 0 isnot a function of z, Equations 75, 76, 77, and 80 will be satisfied.
Using Equationm 78 and 79 along with stress atratn relationships we have

dIXI airdx. * dy /

Using 0 In theme relationships yields

a all# + a, 0

BW ,'Z G 'x a"*' yx' Gu ,y-'- '
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Thus at

- + - - (SI) or a constant

usg the displacemkbts and the streus-strWAi relatloneblPO we hATS

or

rZ.. %a (62)

Lia.. .- i+e (83)

- - - 4.z -8 
84

subtracting Equation PA fromi EquatIou 83

1_ am# + - -3-ze

6 a C, it ay a

or

912 + Ze(85)

op I~ ays '

41.



AVML-TR-66-42

To obtain boundary conditions we look at the outside of a cross-section as follows.

y

sin -

Figure 19. Cross Section of Bar Showing Boundary Forces

Sa- o - r cosO, +r sin 8 -. r

but raz z 0 on the boundary

a0 . a# 
a0

or

do
Take c - o for solid oross-section, thus

* 0 on boundary

Now to find expression for torque

y

Figme 20. Cross Section Showing Stressed Element

dTz--y ri, dA + x rzy dA

T = f (y + _ý X)dA

Area

ff(y -* +#+ z ff #dA
Area Area
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Green's Theorem in a pl a ne can be used on the first integral. This theorem states
(Reference 1)

ff ( O-P- d ) d z =f Pdx +'Qd

Area curve

Let

apx y +

Then

Q F1 y#P

Now

S +0 + -+ didy r2j-y~dKt+ j

Area a+ Boundary

do d

Boundary

From Figure 20, the normal force at the boundary

dy Cos 19 =(x component of a unit vector in
d� •In the normal direction along the

bound"ry
-- d.x sine = ny (y component of same unit vector)
do

Now

T -f (Xn+ yn),ds + ,ff 0 , dA
boundary A,-,

The first integral Is - 0 since 0 - 0 on boundary
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T a 2 Jf#dA (86)
Area

Figurs 21 shows the crou-mection of an ortbotropic bar subjected to torsion. It wiU be
assumed that a/b •i0, which will allow rx. to be nseoeted (Rdereace 2). Thus the stress
fmontios 0 will be a famation of y only.

T t

Figure 21. Cross Section of an Orthotropic Bar Subjected to Torsion

Equation 85 will become

!L#-u -- 2 6 (87)

dy

Intagrating Equation 87 yieldis

* -Gxz ay, + C, y + CA

U sing the condition € - 0 at y - •t/2 we have

and

#- 6 - y') e88)

d#a u- u 2 u6 y (89)
dy

IVsng ¢quatlon 86 for toz4ue

I wt5 GXZGT f •X 1A• - y- ) dx dy-
to

-T
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or

3T (90)
wt'9

Let us now look at the cae where the cross-sectiom of a laminate is radially isotropic
(that is, GQx - GYd. This is illustrated by the cass of a unidirectional layup of arbitrary

cross-section as shown in Figpre 22.

Figure 22. Unidirectional Composite with Cross Section of Arbitrary Shape

Let the torsional modulus be repremeted by G. Tiros

Gz :Gy :6G

and Equation 8• becoones

t a -v 0

010 0 4K 9- Z0

V ' 00o6 (;

0 K

wh Fisfies t2. Uonidiretiontal Co 0posit wthe Crosnay s in tSsncution of AririySa eld

Thus

V,- -2 G~r 193)
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Tyz = GOr (94)Ty z 3ia

Using Equation 86

T - G ff (r R rd~dr

a-27 f G (r( -Re)rdr

:- VGO (-R' r

Thus

T a (95)
2

or

G 2T (96)

The second case we will examine is that of a rectangular bar as shown in Flure 23.

L

Figure 23. Rectangular Cross Section

If 0 ts chosen in this rase by multiplying the equations of the boundaries, the compatibility

condition V 2 0 - 2G q cannot be satisfied. So a nolution will be attempted in terms of a double
Fourier Series

Let

$i Er X I in-nzI M=I m" Wf
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which rat talfes 0 - 0 on bomundary

a - +f] 'Sin x - sin I

3 -268

Using the equation for Fourier coaoflfoemts we bavy

so9 tw L dd

z set? v u--Ia sin ay

a Is

Performing the integation will yield

Sa 3,•,0-t' (97)

Thus

-- r • ,L, CO -* it •,- si y •

4 I m 4 Of SIP~(6

l me [1"r )3 + Mal

Tbun

T " ff/dudy

268t4' t 40

in -i - -y dx G$y

mn,'4 [(xi)'÷.

ThT
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Let

T 2." CoG tt I2

T (103)

wt

T m1 KOOw t 0.102

K- 2 6 am. I 13

t / IG wt K12

1.5 0.196
2.0 0.229
2.5 0 .242~
3.0 0 .253
4.0 0.281
6.0 0.299

10.0 0.312
0.333
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